A Reliable Observational Tool to Measure Food and Beverage Marketing in Sport Settings

Rachel Prowse, RD, PhD Candidate
School of Public Health
University of Alberta
Alberta, Canada
Conflict of Interest

The COI disclosure statement was made and it is available on the abstract book.

No conflicts of interest to declare.
Outline

• Rationale
• Objective
• Tool Development
• Reliability Results
• Conclusions & Implications
Why study food marketing in sport settings?

- Risk factor for childhood obesity\(^2\)
- Restrict food marketing where children gather\(^2\)
- Food + physical activity = healthy halo\(^3\)
- Affects children’s food preferences and practices\(^1\)
Objective

To develop a **reliable** and **valid** environmental assessment tool to measure the nature and extent of food and beverage marketing in municipal recreation facilities
Tool Development

Business (Marketing)4

Public Health5

Marketing of food and non-alcoholic beverages to children

Exposure

Power

Impact on:
- Food preferences
- Purchase requests
- Consumption patterns
Tool Development

The MAT measures:
- **Number** of promotions
- Food-related *products/brands/retailers* promoted
- Whether the promotion was **directed to children**
- Whether the promotion was related to **sports**
- Physical **size** of the promotion

Assesses marketing in:
1. **Food Service areas**
2. **Sports** areas
3. **Other** areas
The Marketing Assessment Tool

Section 2 - Entrance, Reception Area & Hallways

<table>
<thead>
<tr>
<th>Location</th>
<th>Product(s) or brand(s) advertised</th>
<th>Child-directed?</th>
<th>Sports-related?</th>
<th>Size of advertising</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility pamphlets or brochures</td>
<td>1.</td>
<td>Yes</td>
<td>No</td>
<td>S M L</td>
</tr>
<tr>
<td>No food/bev ads</td>
<td>2.</td>
<td>Yes</td>
<td>No</td>
<td>S M L</td>
</tr>
<tr>
<td>No applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility televisions</td>
<td>1.</td>
<td>Yes</td>
<td>No</td>
<td>S M L</td>
</tr>
<tr>
<td>No food/bev ads</td>
<td>2.</td>
<td>Yes</td>
<td>No</td>
<td>S M L</td>
</tr>
<tr>
<td>No applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welcome desk</td>
<td>1.</td>
<td>Yes</td>
<td>No</td>
<td>S M L</td>
</tr>
<tr>
<td>No food/bev ads</td>
<td>2.</td>
<td>Yes</td>
<td>No</td>
<td>S M L</td>
</tr>
<tr>
<td>No applicable</td>
<td>3.</td>
<td>Yes</td>
<td>No</td>
<td>S M L</td>
</tr>
<tr>
<td>Walls/ floors</td>
<td>1.</td>
<td>Yes</td>
<td>No</td>
<td>S M L</td>
</tr>
</tbody>
</table>

WHERE? WHAT? HOW?
Inter-Rater Reliability Testing

- 2 independent raters
- 5 facilities
- Photos taken and used to verify answers
- Inter-rater reliability tested:
 - Percent perfect agreement
 - Categorical variables: Unweighted Cohen’s Kappa coefficient6,7
 - Continuous variables: Intra-class Correlations6,8
Inter-Rater Reliability Results

<table>
<thead>
<tr>
<th>Category</th>
<th>Percent Agreement</th>
<th>Kappa / Intra-class Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID marketing</td>
<td>92%</td>
<td>Kappa=0.88*</td>
</tr>
<tr>
<td># of marketing instances</td>
<td>61%</td>
<td>ICC = 0.95*</td>
</tr>
<tr>
<td>Product marketed</td>
<td>100%</td>
<td>Kappa=1.00*</td>
</tr>
<tr>
<td>Child-directed</td>
<td>100%</td>
<td>Kappa=1.00*</td>
</tr>
<tr>
<td>Sports-related</td>
<td>99%</td>
<td>Kappa=0.94*</td>
</tr>
<tr>
<td>Size</td>
<td>92%</td>
<td>Kappa=0.85*</td>
</tr>
</tbody>
</table>

*statistically significant at p<0.001
Conclusions & Implications

The Marketing Assessment Tool:

1. is reliable
2. is adaptable
3. can inform effective policy interventions to restrict children’s exposure to powerful unhealthy food and beverage marketing
Funding

Funding provided by:
References

7. Landis JR, Koch GG. The measurement of observer agreement for categorical data. biometrics. 1977:159-74.